A Classification of Additive Symmetric 2-cocycles

نویسندگان

  • ADAM HUGHES
  • JOHNMARK LAU
  • ERIC PETERSON
چکیده

We present a classification of the so-called “additive symmetric 2-cocycles” of arbitrary degree and dimension over Fp, along with a partial result and some conjectures for m-cocycles over Fp, m> 2. This expands greatly on a result originally due to Lazard and more recently investigated by Ando, Hopkins and Strickland, and together with their work this culminates in a complete classification of 2-cocycles over an arbitrary commutative ring. The ring classifying these polynomials finds application in algebraic topology, to be fully explored in a sequel.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

An Elementary Classification of Symmetric 2-Cocycles

We present a classification of the so-called “additive symmetric 2-cocycles” of arbitrary degree and dimension over Zp, along with a partial result and some conjectures for m-cocycles over Zp, m > 2. This expands greatly on a result originally due to Lazard and more recently investigated by Ando, Hopkins, and Strickland, which together with their work culminates in a complete classification of ...

متن کامل

Multiplicative 2-cocycles at the prime 2

Using a previous classification result on symmetric additive 2-cocycles, we collect a variety of facts about the Lubin–Tate cohomology of certain formal groups to produce a presentation of the 2-primary component of the scheme of symmetric multiplicative 2-cocycles. This scheme classifies certain kinds of highly symmetric multiextensions, generalizing those studied by Mumford or Breen. A low-or...

متن کامل

Cohomology of Gl(2,r)-valued Cocycles over Hyperbolic Systems

We consider Hölder continuous GL(2, R)-valued cocycles over a transitive Anosov diffeomorphism. We give a complete classification up to Hölder cohomology of cocycles with one Lyapunov exponent and of cocycles that preserve two transverse Hölder continuous sub-bundles. We prove that a measurable cohomology between two such cocycles is Hölder continuous. We also show that conjugacy of periodic da...

متن کامل

Classifying pentavalnet symmetric graphs of order $24p$

A graph is said to be symmetric if its automorphism group is transitive on its arcs. A complete classification is given of pentavalent symmetric graphs of order 24p for each prime p. It is shown that a connected pentavalent symmetric graph of order 24p exists if and only if p=2, 3, 5, 11 or 17, and up to isomorphism, there are only eleven such graphs.

متن کامل

Decompositions of Beurling Type for E0-semigroups

We define tensor product decompositions of E0-semigroups with a structure analogous to a classical theorem of Beurling. Such decompositions can be characterized by adaptedness and exactness of unitary cocycles. For CCR-flows we show that such cocycles are convergent. Introduction. A well-known theorem of Beurling characterizes invariant subspaces of the right shift on l(N) by inner functions in...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010